Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.

نویسندگان

  • H F El-Sharif
  • H Yapati
  • S Kalluru
  • S M Reddy
چکیده

UNLABELLED We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. STATEMENT OF SIGNIFICANCE The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our hydrogel-based MIPs for the selective recognition of bovine serum albumin (BSA). Specifically, Co(II)-complex based MIPs exhibited a 66% enhancement (in comparison to our normal MIPs) exhibiting 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/ non-imprinted (NIP) control). The proposed metal-coded MIPs for protein recognition are intended to lead to unprecedented improvement in MIP selectivity and for future biosensor development that rely on an electrochemical redox processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC). The fluorescence of lysozyme-imprinted polymer (Lys-MIP) was quenched more strongly by Lys than that of nonimprinted polymer (NIP), which indicated that the Lys-MIP could recognize Lys. The...

متن کامل

Molecularly Imprinted Polymers for the Selective Recognition of Proteins

Title of dissertation: MOLECULARLY IMPRINTED POLYMERS FOR THE SELECTIVE RECOGNITION OF PROTEINS Daniel S. Janiak, Doctor of Philosophy, 2009 Dissertation directed by: Professor Peter Kofinas Fischell Department of Bioengineering Molecular imprinting is a technique used to synthesize polymers that display selective recognition for a given template molecule of interest. In this study, the role of...

متن کامل

Preparation of a Selective L-Phenylalanine Imprinted Polymer Implicated in Patients with Phenylketonuria

Abstract Background: Molecular imprinting is a method for synthesizing polymers with structure-selective adsorption properties with applications such as, selectivity binding, drug delivery systems and anti-bodies. The present study aims at optimizing the preparation of molecularly imprinted polymer (MIP) against l-phenylalanine, in order to increase phenylalanine-binding in Enzymatic Intestinal...

متن کامل

The Electrochemical Sensor for Selective Solid Phase Extraction of Pseudoephedrine Hydrochloride in a Real Sample

In  the  current  study,  a  new  technique  was  developed  for  quantification  and  qualification  of pseudoephedrine hydrochloride (PSE) in a real sample, which was based on electrochemical sensors and  molecular  imprinted  polymer  (MIP).  The  carbon  paste  electrode  (CPE)  was  modified  and optimized by a different ratio of MIP. MIP/CPE was used as the extraction and working electrod...

متن کامل

Effects of charge density on the recognition properties of molecularly imprinted polyampholyte hydrogels

Molecularly imprinted polymers are synthetic materials designed to selectively bind to a templated molecule. In this study, the effect of including both positive and negative charges simultaneously into the hydrogel network on the selective recognition properties of the MIP is examined. Using 3-methacrylamidopropyl trimethylammonium chloride (MAPTAC) as a cationic monomer and 2-acrylamido-2meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2015